
Networking
Patrick Cardwell
James Lowrey

Blaine Morbitzer



Overview
● Transmission protocol

○ UDP, TCP

● Game Networking Architecture
● Server/Client Interactions

○ Client-side prediction, Interpolation, Lag Compensation

● Backend As A Service
● Unity Demo
● QuakeWorld Overview
● Quake demo



Protocol
Definition: “Defines the format and the order of message exchanged between two 
or more communicating entities, as well as the actions taken on the transmission 
and/or receipt of a message or other event” - Computer Networking a Top Down 
Approach 

Human Example: Ordering food at a restaurant 



The Internet

Internet Protocol Stack



TCP - Transmission Control Protocol
● Connection oriented stream over an IP network: Reliable and Ordered

○ Guarantees data arrives in the order it was written
■ Uses acknowledgement packets sent back to the sender and automatic retransmission

○ Streams of data: TCP automatically splits data into packets and sends across network
○ Treats communication like writing and saving a file from one computer to another
○ Won’t send too much to the receiver
○ Sender will slow down if going too fast

● Backbone for almost everything you do online: web browsing, IRC, email, etc



TCP continued
● Establishing a connection

○ Three way handshake
○ Takes 1 round-trip time (RTT)

● Segment Structure



Definitions
● Network Socket: Endpoint of inter-process communication across a network

○ Comprised of local IP, port number, and transport protocol (UDP, TCP, raw IP)
● Port: Endpoint of communication in OS. ID’s specific process or service

○ 80: HTTP --- 21: FTP --- 194: IRC --- 443: HTTPS
● Socket API: APIs (usually by OS) that allows apps to control/use network sockets
● Socket Address: Combo of IP and port number



Sample TCP Python Code
Client CodeServer Code



UDP - User Datagram Protocol
● Connection-less protocol. 

○ Guarantees a given packet will arrive in whole or not at all
○ Packets can be received out of order with loss of packet information

■ Generally 1-5% loss and in order
○ Sends and receives packets directly: very thin layer over IP
○ Unreliable data transfer
○ No handshaking
○ Sent as fast as desired

● Used for real-time communication-small packet loss preferable to slow downs



UDP continued
● Checksum

○ For error detection
○ 1’s complement sum of 16 bit words

● Segment Structure
○ small segment header



Sample UDP Python Code
Client CodeServer Code



TCP vs UDP
What should you choose for your game state?

It depends...

Games where timing is paramount and losing a few packets is acceptable then you 
should use UDP.

Examples: Counter Strike, League of Legends, etc.

Games where packets need to be reliably sent you should (probably) use TCP.

Examples: World of Warcraft, online poker, etc.



Game Network Architecture
Peer to Peer: direct connection and host/client

● First type of game networking
● Common today in bluetooth, local Wifi mobile games, and RTS

Pros: No cost to maintain servers, play not dependent on few servers, scales well

Cons: Difficult to implement, prevent cheating, maintain security, client limitations, 
Latency matches slowest peer



Game Network Architecture
Server/Client: single server that is responsible for running the main game logic

● First developed for Quake

Pros: Easier to implement, can scale well, better security, lower latency, game not 
affected by one poor client connection

Cons: Money, fewer servers



Server/Client
Client: Sends input, receives server packets, renders scene
Server: Read and execute input, simulate game world, send updates to clients
Lag!



Client-Side Prediction
Naive: Client sends inputs, server processes & sends updated state, client moves

Client-Side Prediction: Send the input and start rendering the outcome of that 
inputs as if they had succeeded. Does not wait for authorization.



Client-Side Prediction
Synchronization: Client moves, server processes & sends response, Client receives 
old response and teleports back in time

Key point: Client is in present, Server is in the past (and authoritative)!

Solution: Client calculates the “present” state of the 
game based on the last state sent by the server, 
plus the inputs the server hasn’t processed yet. 
Client discards requests the Server has 
acknowledged receiving.



How to Render Other Clients
Extrapolation/Dead Reckoning

● Treat others as physics objects and render using last known forces
● OK for deterministic games (racing)
● Bad for non-deterministic, high jerk games 



How to Render Other Clients
Interpolation: Render players based on old/previous authoritative data

Pros: Shows player movement more accurately

Drawbacks: Bouncing ball, dropped packets, other players rendered in past!



Lag Compensation
Player sees himself in the present, sees other players in the past (a bit)

Before executing any player command, the server:

● Computes player latency & moves him back in time
● Computes all other player lag (latency + interpolation) and moves them back in 

time relative to YOU
● Execute command and move everyone forward in time again



Lag Compensation
Design Tradeoffs

● Previously, had to lead enemies by an amount related to latency
● Now, the enemy can be killed when he thinks he is safe

○ HIghly lagged player shoots less lagged player and hits, after the LL has hidden behind corner
○ Usually not noticed: This is a “rare” occurrence, and players may not know where enemies aim



BaaS: Backend as a Service
Out-of-the-box connections for games (and apps) to cloud services
Benefits
● Fast to prototype, cheap, scalable, multi-platform

Drawbacks
● BaaS providers may be constrained with location/resources
● Baas provider may go out of business
● Can be more expensive as your app grows



BaaS



Unity Demo



http://www.youtube.com/watch?v=i4mm08iJnCE


networking_in_action
with Quake: QuakeWorld

cc: porschelinn - https://www.flickr.com/photos/54144062@N03



QuakeWorld
Overview



QuakeWorld
Overview 

● QuakeWorld is a multiplayer update written by John Carmack for id software’s 
game Quake. 

● Quake was released on June 22, 1996 on MS-DOS. (yes DOS)
● QuakeWorld soon followed Quake’s release being made available in December 

of 1996 
● Quake had a very good playing multiplayer for people with broadband 

connections (very few people at the time) and LAN multiplayer games. 
● The issue was that users with dial-up modem connections were experiencing 

issues due to latency problems. This is where the quake world update came in!
● The QuakeWorld update is considered to be the first popular online multiplayer 

FPS game.
● Was the first online multiplayer game I ever played.



Quake
Overview 



QuakeWorld
Networking : Introduction 

● The QuakeWorld update to Quake is considered a “game” changer in the 
video game industry relative to networking.

● All future games used the same approach to networking following the 
release and success of QuakeWorld.

● In the original Quake multiplayer the strict TCP/IP was used as the medium 
which multiplayer games were played.

● Problems with TCP/IP…
● UDP Incoming!
● Success!



QuakeWorld
Networking : OSI Model

QuakeWorld’s Revamped OSI Model



QuakeWorld
Networking : High-Level



QuakeWorld
Networking : Netchan Layer

.cnet_chan.c Header



QuakeWorld
Networking : Latency Calculation

net_chan.c



QuakeWorld
Networking : UDP Layer & Qport

One of the issues tackled by John Carmack as routers became more and 
more popular was use a remote IP in combination with a UDP port. He 
eliminated this issue. By replacing the UDP port with a Qport in the Net 
Channel layer’s header.

Located in net_chan.c source file once again.



QuakeWorld
Client

net_chan.c



QuakeWorld
Server

sv_main.c

sv_nchan.c



QuakeWorld
Linux Demo

QuakeWorld Gameplay



THE END


